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Abstract

Mineral dust aerosol is an important contributor to the Earth climate system and the correct
representation of its size distribution is fundamental for shaping the current state and the evolution of
climate. Despite many observational dust size data are available in the literature, using this body of
information to proper guide the development and validation of climate models and remote sensing
retrievals remains challenging. This is due to the diverse nature of different data, both in terms of
measurement methods, diameter definitions, sampled concentrations and data treatments, leading to
inherent heterogeneities. In this study we collect, evaluate, harmonize, and synthetize 58 size
distribution data from the past 50 years of in situ field observations with the aim of providing a
consistent dataset to the community to use for constraining the representation of dust size across its
lifecycle. Four levels (LEV) of data treatment are defined, going from original data (LEVO), data
interpolated and normalized on a standardized diameter path (LEV1), and data in which original particle
diameters are converted into a common geometrical definition under both spherical (LEV2a) and
aspherical (LEV2b) assumptions. Size distributions are classified to be representative of emission/source
(SOURCE, <1 day from emission; number of datasets in this category, N=12), mid-range transport (MRT,
1-4 days of transport; N=36) and long-range transport (LRT, >4 days of transport; N=10). The
harmonized dataset shows consistent features in the shape of the dust size distribution suggesting the
conservation of airborne particles with time: a main mode located at ~10 um (in volume) is observed
for SOURCE dust, decreasing to ~5 um and ~2 um for MRT and LRT conditions, respectively, for which
an additional mode becomes evident below 0.4 um. Data for the three levels (LEV1, LEV2a, LEV2b) and
the three categories (SOURCE, MRT, LRT), together with statistical metrics (mean, median, 25% and 75%
percentiles, and standard deviation) are made available as: SOURCE (https://doi.org/10.57932/58dbe908-
9394-4504-9099-74a3e77140e9; Formenti and Di Biagio, 2023a); MRT (https://doi.org/10.57932/31f2adf7-74fb-
48e8-a3ef-059f663c47f1; Formenti and Di Biagio, 2023b); LRT (https://doi.org/10.57932/17dc781c-3e9d-4908-
85b5-5c99e68e8f79; Formenti and Di Biagio, 2023c).

Introduction

Airborne mineral dust aerosols emitted by the aeolian erosion of bare soils contribute in a major way to
the Earth’s radiative budget and environmental processes, including the human health. Because of their
native mineralogical composition and size distribution, they scatter, absorb, and emit solar and infrared
radiation, influence the formation and brightness of liquid and ice clouds, and affect the composition of
the atmosphere and the ocean, while also transporting pollutants, viruses and bacteria across the
continents and the oceans (Knippertz and Stuut, 2014, and the many references therein).

As a consequence, a large effort has started in the last decade to include the representation of those
properties in climate and air quality models. Indeed, the complex mineralogy of mineral dust, depending
on that of the parent soils (Claquin et al., 1999; Journet et al., 2014; Gongalves Ageitos et al., 2023a), is
now accounted for in models (Scanza et al., 2015; Perlwitz et al., 2015a; 2015b; Menut et al., 2020; Kok
et al.,, 2017; Di Biagio et al., 2020; Gémez Maqueo Anaya et al., 2023) and starts to be retrieved by
remote sensing (Green et al., 2020; Zhou et al., 2020; Di Biagio et al., 2023).
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On the other hand, representing the span and the variability in time and space of the dust aerosol size
distribution remains a challenge.

The particle size distribution of mineral dust extends over several order of magnitudes. Iron-rich
particles as small as 14 nm in diameter have been observed in the laboratory from deflating soils by
Baddock et al. (2013). During sandstorm in Algeria, Gomes et al. (1990) measured an increase of the
mass concentration of particles between 100 nm and 1 pm, and attributed to clays disaggregated by
sandblasting. Measurements of the size-resolved vertical dust flux by Gillette et al. (1972; 1974a;
1974b) based on microscopy analyses of samples from Texas and Nebraska showed the presence of
particles up to several microns in dust emissions.

The representation of the accumulation and coarse modes in mineral dust has long being based on the
columnar measurements by the sun/sky photometers of the Aerosol Robotic Network (AERONET)
network, which provides with normalized size distributions of mineral dust considered as chemically
homogeneous particles the 0.1—30 um optically—equivalent diameter (Dubovik et al., 2002; 2006;
Holben et al., 2011), and which, incidentally, serve also the look—up tables of the remote sensing
retrievals of dust from space (e.g., Cuesta et al., 2015; Zhou et al., 2020).

Nevertheless, in situ observations at ground—based stations and on aircraft in more recent years have
shown that particles of several tenths, sometimes hundreds, of micron are airborne at emission, and
remain so after several days of transport (Reid et al., 2003; Formenti et al., 2003; Rajot et al., 2008;
Chou et al., 2008; Kandler et al., 2007; 2009; Wagner et al., 2009; Klaver et al., 2011; Ryder et al., 2013;
2015; Rosenberg et al., 2014; Denjean et al., 2016; Wienzerl et al., 2017; van der Does et al., 2018).

These observations have been instrumental to a number of advances. Using them as ensemble dataset,
to smooth spurious atmospheric variability, they have served as a basis to a new classification of the
dust size distribution in four modes, namely fine dust (diameter < 2.5 um), coarse dust (2.5 < diameter
<10 pm), super coarse dust (10 < diameter < 62.5 um) and giant dust (diameter > 62.5 um), extending
above the size range retrieved by AERONET (Adeyemi et al., 2023). Additionally, they have also fostered
the revision of the numerical schemes of emissions and deposition, and identified the numerous
processes and properties (non—spherical shape of particles, electric forces, atmospheric turbulence),
that could counteract the size—selective removal by gravitational settling and keep particles airborne
longer than expected (Kok, 2011; Huneeus et al., 2011; Mahowald et al., 2011; Kok et al., 2017; Di Biagio
et al, 2020; Zhao et al., 2022; Adebiyi and Kok, 2020; Adebiyi et al., 2020; Huang et al., 2021; Meng et
al., 2022; Adeyemi et al., 2023).

In support of those activities, in this paper we present a large and standardized compilation of in situ
observations of the particle size distribution of mineral dust conducted during the past 50 years of
research. This dataset extends the currently published ensembles (Meng et al., 2022; Adeyemi et al.,
2020; 2023) to provide with a state—of—the art of the current knowledge in support to the development
of models, and ground-based and satellite remote sensing. Analysis of this dataset may provide with an
integrated view of the size distribution of dust particles across their life cycle to evaluate their impacts
in the Earth/human system.

2. Methods

2.1 Constitution of the dataset

Data presented in this paper result from in situ ground-based and aircraft observations of airborne dust
conducted during field campaigns during the past 50 years of dust research. Data from deposition
samples (e.g., van der Does et al. 2018 or Varga 2021) are not considered in this analysis.

Only datasets being published and properly referenced in the open peer-reviewed literature were
retained. We also privileged datasets for which the methodology of acquisition, calibration and data
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treatment was well described so that the data quality can be assessed. Finally, we search for data as
much as possible representative of different source and transport regions of the world.

The observations contributing to the dataset are listed in Table S1 and the spelling of the acronyms of
the field campaigns is reported in Text S1 in the supporting material. Data are geo-localized in Figure 1,
where they are classified with respect to their time after emission.
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Figure 1. Geographical location of the datasets contributing to size distribution observations for the source, the
mid-range transport (MRT) and the long-range transport (LRT) categories. The legend indicates the line style
used in the plot. The number of data for each category is indicated in the parenthesis in the legend.

Observations obtained at the time of dust emission or within 1 day after emission are classified as
SOURCE. Observations corresponding to 1 to 4 days after emission and/or geographically acquired
near—source regions (for example, offshore North Africa) are classified as mid-range transport (MRT).
Observations at times exceeding 4 days after emission or geographically distant from source regions
(for example, observations in the Caribbean) are classified as long-range transport (LRT).

The SOURCE dataset (Fig 1, black points) consist in 12 observations in Northern Africa, North America,
and Asia, and one data point in Australia. They include works by Gillette et al. (1972, 1974), Gillette
(1974), Fratini et al. (2007), Rajot et al. (2008), Sow et al. (2009), Shao et al. (2011), Ryder et al. (2013a,
2013b), Rosenberg et al. (2014), Huang et al. (2019), and Khalfallah et al. (2020), a set of data recently
used by Kok et al. (2017), Di Biagio et al. (2020) and Huang et al. (2021) to constrain the shape of dust
size distribution at emission in model studies, and the most recent work by Gonzales—Florez et al. (2023).
The MRT class (Fig. 1, blue points) is contributed by 36 datasets from field campaigns (ACE2, ACE-Asia,
ADRIMED, AER-D, AMMA, DABEX, DARPO, DIAPASON, DODO1-2, FENNEC, GAMARF, GERBILS, INDOEX,
NAMMA, RHaMBLe, SALTRACE, SAMUM1-2, TRACE-P, and UAE2) in Western Africa, Capo Verde, the
Mediterranean basin, the eastern tropical Atlantic, Saudi Arabia, Japan, and Indian Ocean, downwind
sources either over the ocean or over desert areas. Additional datasets from studies performed in the
Sahara, the Atlantic Ocean, Canary Islands and Japan (Schutz, 1981; D’Almeida et al., 1987; Maring et
al., 2000; Kobayashi et al., 2007) are added to the dataset. The LRT class (Fig. 1, red points) lays on 10
datasets of observations across the Atlantic Ocean and South America and is contributed by
observations from Bacex, CLAIRE, Dust-Attack, Go-Amazon, PRIDE, and SALTRACE campaigns and
intercontinental dust transport data from Schutz (1981).
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2.2. Instrumentation contributing to the in situ dataset

The natural dynamical range of the particle size and concentration of mineral dust can only be
represented by a combination of instruments based on different intrinsic particle properties such as
density, electrical charge, shape and composition (e.g., Reid et al.,, 2003a; Formenti et al., 2011;
Wendisch and Brenguier, 2013; Mahowald et al., 2014, Adeyemi et al., 2023). As a consequence, the
datasets considered in this paper are contributed by different in situ instruments, also described in Text
S2 in the supporting material, namely:

0 Optical particle counters (OPC) using the dependence of light scattering on particle size and providing
with the particle concentration as a function of the optical equivalent diameter (e.g., Reid et al.,
2003b; Clarke et al., 2004; Osborne et al., 2008; Formenti et al., 2011; Ryder et al., 2013a, 2018;
Khalfallah et al., 2020).

0 Particle collection by filtration or impaction followed by individual particle characterization by
transmission (TEM) and/or scanning electron microscopy (SEM) sizing particles as function of their
equivalent projected-area diameter and coulter geometric sizing methods, (e.g., Gillette et al., 1972,
1974a, 1974b; Reid et al., 2003a; Khobayashi et al., 2007; Kandler et al., 2009; Chou et al., 2008).

0 Multi-stage filtration or impaction sampling coupled with gravimetric or chemical analysis providing
with the mass size distribution as equivalent aerodynamic diameter (e.g., Formenti et al., 2001; Reid
et al., 2003b).

o0 Differential and Scanning Mobility Particle Sizer (DMPS and SMPS) providing the size of particles in
the submicron range as the electrical mobility equivalent diameter of a charged particle moving in a
static electric field (e.g., Maring et al., 2000, 2003; Bates et al., 2002; Muller et al., 2010; Denjean et
al., 2016a, 2016b).

0 Aerodynamic particle sizers (APS), measuring the equivalent aerodynamic diameter of a sphere of
unit density having the same terminal velocity in an accelerated airflow as the irregularly shaped
dust particles (e.g., Maring et al., 2003; Reid et al., 2003b; 2008; Struckmeier et al., 2016)

Each of those instrument types sizes particles on an equivalent diameter (optical, projected-area,
aerodynamic, mobility) that depends on their respective working principle. Converting those
operational size definitions into a homogenized one is part of the treatment applied in this work, which
follows the theory proposed and discussed in the literature and benefits of recent progresses in
characterizing/synthetizing dust properties relevant for these treatments (e.g., Hinds, 1999, De Carlo et
al., 2004 ; Mahowald et al., 2014; Di Biagio et al., 2019; Huang et al., 2020, 2021; Formenti et al., 2021).
Diameter definitions and formulas to convert each of them into a geometrical diameter, both under the
assumption of spherical and aspherical dust, is provided in Text S3 and summarized in Table S2.

Text S4 presents relevant information on each dataset considered in the present analysis. This includes
a brief description of the field operations, the experimental conditions, the type of original data
(number, volume or mass concentration size distribution, size-resolved emission fluxes), the
instrumentation, and the data treatment applied to the measurements (averages, diameter corrections,
etc.) in the original publication. Original data were obtained, as much as possible, through a personal
contact with the data providers or from the original publications based on a digitalization procedure
using online tools (https://automeris.io/WebPlotDigitizer/). This is also indicated in Text $4.

2.3. Data treatment, harmonization, and synthesis

The original observations were treated to provide with a harmonized dataset both in terms of the
definition of particle diameter and differences in number concentrations. Four level of data treatment
are defined as described below.

1/ Level-0 (LEVO): original data, taken at the native resolution or the resolution from digitalization
process and converted into volume distribution assuming spherical particles (n/6*D**dN/dlogD), where

3
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D is the particle diameter used in the publication and dN/dlogD is the particle number concentration.
For starting removing differences due to sampling concentration, and in absence of information on
original bin width in the majority of cases, LEVO data are normalized so that the maximum of the volume
size distribution is equal to 1;

2/ Level-1 (LEV1): data from LEVO are interpolated over a common size range of equi-logarithmically
spaced diameters (dlogD = 0.05) encompassing the original diameter range for each dataset and
normalized so that the integral is equal to 1 over a common diameter range. The diameter range for
integral normalization was set to be the largest as possible and to be covered by more than 90% of the
datasets in each category. For SOURCE data it resulted that the diameter range for common integral
normalization is within 1.58 and 7.1 um, and for MRT and LRT it is between 0.71 and 8.9 um.

3/ Level-2a (LEV2a): based on LEV1, the LEV2a data treatment aims at harmonizing the size distributions
by converting the operational original particle diameters, which depend on the physical principle of each
instrument, into a common—defined sphere-equivalent geometric diameter. Data from LEV1 are
treated as in the following with respect to their diameter corrections:

O data already provided as geometrical diameters (from coulter counters, i.e. one only dataset in
our study) are left unchanged;

0 data provided as projected-area diameters (i.e. from microscopy) are left unchanged;

O data provided as aerodynamic diameters (from APS or cascade impactors) are corrected
assuming a shape factor (x) of 1 (under spherical assumption), therefore a size-invariant
conversion factor of 1.58 (see Eq. S2) is applied to the dataset assuming dust density of 2.5 g
cm™ (Dgeom=Daerod/1.58). If original aerodynamic diameter data are already converted into
geometrical diameter, we replace the original correction with the conversion factor of 1.58.
Since the correction is a multiplicative factor the dlogD of the bins remain unchanged;

O data provided as optical diameters (from OPCs) are converted into sphere-equivalent
geometric diameters applying the optical to geometrical correction by assuming homogeneous
spherical particles and a value of CRI of 1.53-0.003i. Data for applying the correction for the
different model of OPCs considered were taken from Formenti et al. (2021) and conversion
factors were recalculated at the dlogD path of 0.05 assumed in the interpolated sizes. For the
GRIMM 1.108 for which calibration is not provided in Formenti et al. (2021) we used the data
taken from Formenti et al. (2011) (P. Formenti, personal communication) interpolated at the
0.05 dlogD path of our diameters. In order to avoid discontinuities appearing and because of
the new dlogD do not significantly differ on average from the value of 0.05 for Dgeom calculated
from Dopt interpolated data, we do not update the dlogD, so that the conversion only imply a
shift of the diameter. More details on the choices applied for corrections in different cases are
provided in Text S4. Original datasets already converted into geometrical diameter, are left
unchanged. However it is worth to note that the ensemble of data already applying an optical
to geometrical correction uses a CRI varying between 1.53 and 1.55 for the real part and 0.001
and 0.004 for the imaginary part and work under the hypothesis of homogeneous spherical
particles (Mie theory), therefore consistent with our treatment. Exceptions are Khalfallah et al.
(2020) using a CRI of 1.43-0.00i as for quartz particles, and Gonzalez—Flérez et al. (2023) using
a CRI of 1.49-0.0015i and also applying calculations in ellipsoidal assumption instead of Mie
theory. The only dataset not theoretically submitted to the optical to geometric correction is
the one provided by Renard et al. (2018) using an OPC built with a specific geometry making the
measurements very low sensitive to CRI calibration.

4/ Level-2b (LEV2b): based on LEV1, the LEV2b data treatment aims at harmonizing the size distributions
by converting the operational original particle diameters into a common—defined geometrical diameter
by taking into account that mineral dust is aspherical. Data from LEV1 are treated as in the following
with respect to their diameter corrections:
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0 data already provided as geometrical diameters from coulter counters are left unchanged. This
technique is in fact only slightly affected by shape effects, as discussed by Kobayashi et al.
(2007);

0 data provided as projected-area diameters are corrected using the size-invariant correction
factor of 1.56 from Huang et al. (2021) (Dgeom=Darea/1.56) (see Eq. S1);

0 data provided as aerodynamic diameter are corrected assuming a size-invariant conversion
factor of 1.45 following Huang et al. (2021) (Dgeom=Daerod/1.45) (see Eq. S2);

0 data provided as optical diameters and already treated as for LEV2a data, are further corrected
by applying a size-dependent aspherical to spherical ratio (ASR(Dgeom)) correction function,
ASR(Dgeom)=(Dgeom )aspherical/ (Dgeom)spherical, tO take into account non—sphericity effects in optical to
geometrical conversion. The ASR function (Fig. S1) is obtained by combining the optical to
geometrical diameter conversion factors for different OPCs calculated by Formenti et al. (2021)
and Huang et al. (2021) both in the assumption of spherical homogeneous particles (Dgeom)spherical
and tri-ellipsoids dust (Dgeom)aspherical. More details are provided in Text S3. Original datasets
derived from OPC measurements already provided as geometrical diameter but under
assumption of sphericity are also corrected by applying the ASR(Dgeom) converting function. The
only exception are Gonzalez—Flérez et al. (2023), that already apply tri—axial ellipsoids
calculations in their optical to geometric conversion, and Renard et al. (2018), not requiring
optical to geometrical conversion.

As for LEV1, the LEV2a and LEV2b data, for which a known interpolation path is used, are normalized so
that the integral of the volume size distribution is 1 over a common diameter range (1.58 — 7.1 um for
SOURCE, 0.71 — 8.9 um for MRT, LRT).

For each category (SOURCE, MRT, LRT) and for each data level (LEV1, LEV2a, LEV2b), the mean, median,
and standard deviation of the particle volume concentration per size class are calculated where at least
2 datasets are available in the diameter range. Additionally, the 25% and 75% percentiles are also
calculated, despite keeping in mind their limited representativeness given the reduced number of
samples in the datasets, especially for SOURCE and LRT classes.

2.4. Limitations of the proposed approach

Some precisions should be given when considering the LEV2a and LEV2b treatment reported in this
work. First, the implicit assumption when applying LEV2a and LEV2b dataset corrections is that dust is
the dominant aerosol species and possible effects due to internal or external mixing of dust with other
aerosol types are not taken into considerations (i.e., in the complex refractive index or shape factor
assumptions). Second, for those datasets that are obtained from the combination of different
techniques, namely DMPS+APS (Bates et al., 2002; Maring et al., 2000, 2003; Muller et al., 2010),
OPC+APS (Chen et al., 2011), SMPS + OPC (de Reus et al., 2000; Otto et al;, 2007; Denjean et al., 20164,
2016b), DMPS + APS + microscopy (Kandler et al., 2011), or multiple OPC instruments (Reid et al., 2003b;
McConnell et al., 2008; Johnson and Osborne, 2011; Ryder et al., 20133, 2013b, 2018; Rosenberg et al.,
2014; Weinzierl et al., 2009, 2011, 2017), the choice is that of applying artefact corrections for the
dominant instrument, often the one in the extended coarse mode range, and consider this correction
applicable to the whole diameter range. This is because when multiples instruments are used to build a
size distribution it is then not easy to reconstruct the steps of data analysis and merging from the original
work. It follows the subsequent considerations:

1/ the corrections applied for the aerodynamic and projected-area diameter apply a constant
size—invariant scaling factor to the ensemble of the size distribution data. In this approximation, if
the SMPS/DMPS is combined with aerodynamic or microscopy data, a correction factor between
1.45 and 1.58, depending on the level and the technique as detailed in the previous section, is
applied in place of the factor 1 (spherical assumption) or 1.19 (aspherical assumption) (see Eq. S3)
expected to convert the mobility diameter to geometrical diameter in LEV2a and LEV2b data. As a
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consequence, the submicron size is 20 to 58% finer than expected only due to mobility to geometrical
conversion.

2/ A similar approach is used to correct datasets where OPC is the main used technique to size dust
particles together with the SMPS. For LEV2a data the Mie correction is applied to the full size
distribution, but being the size-dependent correction mostly inactive for submicron particles (i.e.
Dgeom ~ Dopt for most OPCs), the approach is mostly equivalent at considering a mobility diameter
correction with a shape factor of 1. For LEV2b data, using OPC corrections induce a limited right
shifting of the size distribution compared to the one that would be obtained from mobility
conversion because of the magnitude of the ASR function (Fig. S1) compared to the shape factor of
1.19 assumed for aspherical dust.

3/ When datasets relying on multiple OPCs measurements, the assumption is that the “dominant” OPC
that is the OPC covering the largest range and the coarsest sizes in particular, is considered. Given
that optical to geometrical corrections are not relevant for submicron particles and that the
magnitude of the correction typically increases for increasing sizes, this assumption is not expected
to determine significant biases in the data. To mention additionally a general ambiguity of the optical
to geometrical correction around the diameter of 1 um where a plateau in the scattering calibration
function for several OPCs models can be found (i.e. Formenti et al., 2021).

More details on the specific assumptions and choices done for each dataset are provided in Text S4.

Further, for LEV2a and LEV2b data for which corrections are applied on the data, caution is take at the
boundary of the size distribution and when the first and/or the last bin of the corrected size showed
unrealistic divergence, these data are removed from the dataset.

3. Presentation and discussion of the dataset

Illustration of the data for different levels is provided in Figure 2. Figure 3 presents the synthesis of the
LEV2b data and the comparison of SOURCE, MRT and LRT distributions. The contribution of different
size classes to the total particle number, surface and volume is summarised in Table 1. Size classes have
been defined according to the classification of Adeyemi et al. (2023) defining fine dust (D < 2.5 um),
coarse dust (2.5 <D <10 pum), super coarse dust (10 < D £62.5 um) and giant dust (D > 62.5 um). Within
the fine dust class, we further calculate the fractions of particles smaller than 0.4 um.
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reported as LEV2b data (mean # standard deviation). For the sake of comparison, and differently from data in Fig. 2, the
SOURCE, MRT, and LRT synthesis datasets reported here are normalized at the integral equal to 1 over a common diameter
range corresponding to 0.35-17.8 um. This is done to remove differences linked to different integration range for SOURCE
data compared to MRT and LRT.
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Dataset D<2.5um 25<D<10 10<D<62.5 D>62.5
(D<0.4 um) um um um

SOURCE 95.4% (20.4%) 4.5% 0.1% 0.4%

Number MRT 99.8% (96.1%) 0.2% 0.0% 0.0%
LRT 99.9% (94.5%) 0.1% 0.0% 0.0%

SOURCE 45.0% (1.1%) 39.4% 15.5% 0.14%

Surface MRT 65.4% (16.8%) 30.7% 3.6% 0.29%
LRT 84.6% (23.1%) 15.1% 0.2% 0.00%

SOURCE 10.8% (0.1%) 34.9% 52.7% 1.6%

Volume MRT 22.1% (1.1%) 44.3% 25.7% 8.0%
LRT 53.4% (3.6%) 44.5% 2.0% 0.0%

Table 1. Percentages of number, surface and volume size distribution in the diameter ranges D < 0.4 um, D < 2.5 um, 2.5<D <
10 um, 10< D <62.5 um, and D > 62.5 um for the mean of the size obtained for the SOURCE, MRT, and LRT LEV2b datasets.

As shown in Fig. 2 and 3 the shape of the dust size distribution at emission and along transport shows
main consistent features. A main mode located at ~10 um (in volume) is observed for dust at emission
and close to sources. The main dust mode decreases to ~5 pm and ~2 um for MRT and LRT conditions,
respectively. Below 0.4 um the dust volume size shows an additional mode, particularly visible for MRT
and LRT. As a matter of fact, the sparse datasets measuring very fine particles at the SOURCE show that
particles with diameters below 0.4 um (however measured only down to 0.2 um, as shown in Fig. 2)
represent approximately 20% of the total particles’” number, increasing to more than 90% in MRT and
LRT. Instruments such as SMPS and DMPS used in MRT and LRT studies measure particles as small as
0.02 um in diameter. Previous single—particle compositional observations showing that the particle
number concentration in the size range between 0.1 and 0.4 um is largely contributed by aluminosilicate
dust particles at emission, while internal or external mixing with aerosols other than dust gains
importance with time and altitude of transport (Chou et al., 2008; Kandler et al., 2007, 2009; Weinzierl
etal,, 2009; 2017; Klaver et al., 2011; Denjean et al., 2016a; 2016b).

The size distribution of dust particles between 0.4 and 10 um is rather consistent and invariant along
the dust cycle. This is true in particular when restricting to the 2.5 to 10 um size range when differences
are minimal and contribution to total volume is in between 34.9% and 44.5%. Below that range, which
is between 0.4 and 2.5 um, the contribution of particles for LRT is significantly higher (53.4% in volume)
than for SOURCE (10.8%) and MRT (22.1%), likely as, because of the normalization, it compensates the
decrease of particles larger than 10 um.

The intensity of the particle volume above 10 um remains unchanged almost up to 100 um for both the
SOURCE and the MRT conditions, which also present similar particle volume. This mode decreases very
strongly for LRT conditions, when it represents only 2% of the total volume, compared to almost 55%
and 34% for SOURCE and MRT, respectively.

The dataset presented in this work, synthetizing available in situ observations, allows to evaluate the
natural variability of dust size distribution along its lifecycle. To be emphasized, however, that while
consistent differences in the mean size distribution curves are obtained going from SOURCE to LRT, as
shown in Fig. 3, the inherent range of variability for each category, represented by the standard
deviation of the data, is also non—negligible and reflects the large range of documented size
distributions, together with the limited statistics available. This is particularly true for both super—coarse
and giant dust at MRT and LRT. Lower variability is identified below 0.4 um, but because of the restricted
number of dataset available for MRT and LRT conditions, while we identify an absence of data for
SOURCE dust below this size range.
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4. Conclusive remark

In this paper we present the most possible comprehensive synthesis of in situ observations of the
particle size distribution of atmospheric dust aerosols. This compilation reflects the current state—of—
the—art and represents a standardized and synthetic benchmark to constrain and evaluate models and
satellite retrievals. We highlight differences and commonalities of the dust volume distribution as a
function of time in the atmosphere, both in terms of main identified modes and relative contribution of
dust in different size ranges. A large statistics of data is available and permit to retrieve robust
information between 0.4 and 10 um where most of observations exist, while above and below this size
range, observations are rare. Dust particles below 0.4 um in diameter are seldom measured close to
source regions, but are found in observations at mid— and long—range transport conditions. Their
presence at emission, their size—segregated composition and state of mixing should be better
documented and understood. The dynamics of the coarse mode above 10 pm, its invariance from
source to mid-range transport, and decline afterwards is reported, and can challenge models.

We acknowledge the evidence that the compilation of a reference dataset is, almost by definition, a
subjective and incomplete exercise which must revised continuously with the emergence of new
datasets, new field campaigns, and the improvement of sampling techniques. We henceforth encourage
colleagues to provide us with new or revised datasets to feed and update the dataset in the future.

Data availability

The LEV1, LEV2a and LEV2b datasets discussed in this paper are available on the EaSy Data, the Earth
System Data repository (https://www.easydata.earth/#/public/home, last access: 14 November 2023)
maintained by the National French DATA TERRA research Infrastructure. Their respective DOIs are
summarized here below:

SOURCE_LEV1.dat, SOURCE_LEV2a.dat, SOURCE_LEV2b.dat: https://doi.org/10.57932/58dbe908-9394-4504-
9099-74a3e77140e9 (Formenti and Di Biagio, 2023a);

MRT_LEV1.dat, MRT_LEV2a.dat, MRT_LEV2b.dat: https://doi.org/10.57932/31f2adf7-74fb-48e8-a3ef-
059f663c47f1 (Formenti and Di Biagio, 2023b);

LRT_LEV1.dat, LRT_LEV2a.dat, LRT_LEV2b.dat : https://doi.org/10.57932/17dc781c-3e9d-4908-85b5-
5c99e68e8f79 (Formenti and Di Biagio, 2023c).

Figures of the individual datasets (including LEVO) are provided upon request.
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